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Transport models 

 

  based on flow models 

 

  interpolation of concentrations measurements (point information) 

 

  balancing of solute fluxes 

 

  evaluation of tracer tests 

 

  prediction of contaminant spreading 

 

  monitoring of in situ remediation measures 

 

  insight in evolution of groundwater quality 

 Just as flow models transport models are mechanistically based. However, the mechanisms 

are more complicated than that of the flow models. Flow modeling is state- of-the-art to-

day, while transport modeling is still exceptional.  
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Transport mechanisms 

 

Advection 

Advection means the movement of solutes caused by groundwater flow. The term convection 

is usually used if groundwater flow is caused by density or temperature gradients. However, 

both terms are not always clearly separated from each other. Advection is the transport along 

pathlines. Therefore pure advective transport can be calculated immediately from results of 

the flow model with so called pathline models. This requires no further solution of equations 

or equation systems as the pore velocity u, which determines the advective flux, can be de-

rived directly from interpolation of the known specific cell fluxes Q:  

 I k AQ f  

with A = Cross-sectional area for water flux [L
2
] 

kf = hydraulic conductivity [L T
-1

] 

 
A

Q
q   

with q = specific flux or Darcy-velocity or filter velocity [L T
-1

] 

 
n

q
u

e

  

with u = pore velocity [L T
-1

] 

ne = effective porosity [-] 

Analytical solutions for pathlines can be provided for simple boundary conditions and model 

geometry. 

 

Diffusion 

Molecular diffusion (Brownian motion) is a mixing process on the molecular level. It results 

from random movement of molecules and leads to an offset of concentration differences. Dif-
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fusive mass flux is proportional to the driving concentration gradient. The proportionality 

constant is the coefficient of molecular diffusion. Diffusive flux is described by FICKs law: 

 
n

c
 DJ m



  

 with J = diffusive flux [M L
-2 

T
-1

] 

Dm= coefficient of molecular diffusion [L
2
 T

-1
] 

c/n = concentration gradient [M L
-3

 L
-1

] 

Molecular diffusion is a relatively slow process. The coefficient of molecular diffusion for 

dissolved ions is roughly 10
-9

 m
2
s

-1
. The magnitude of diffusive transport can be estimated 

with the help of a strongly simplified calculation (e.g. Neretnikes, 2002): 

t Dl m2.2  

 with l = distance of diffusive transport for which the mean concentrations equals 

50% of the maximum concentration [L] 

  t = typical time [T] 

Setting t = 1 year leads to l = 40 cm, i.e. the typical diffusive transport velocity is in the order 

of some decimeters per year. For comparison the typical advective transport velocity in por-

ous aquifers is usually in the order of 100 m per year. 

 

Dispersion 

Advection and diffusion are the only effective processes on the pore scale. However, as for 

groundwater flow the description of transport processes on the pore scale is not feasible in a 

groundwater model. Instead a continuum approach on the basis of a representative elementary 

volume (REV) is used. 

Inside a single pore velocity differences arise because of an approximately parabolic velocity 

profile between the pore walls. Furthermore mean pore velocities may differ from pore to 

pore because of different pore diameters. This velocity distribution leads to a smearing of 

sharp fronts. As the velocity distribution is not resolved in the REV but represented by a sin-
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gle mean velocity, the observed front spreading has to be accounted for in form of an addi-

tional mixing term, called microscopic or pore scale dispersion. The following figure illu-

strates the principal mechanisms: 

Velocity distribution in
a single pore

velocity distribution 
between pores

 

Pore scale dispersion and molecular diffusion would be the only effective mixing processes in 

a completely homogeneous aquifer. Real aquifers, however, are always heterogeneous. The 

heterogeneity leads to a non uniform velocity distribution and thus to smearing of fronts 

above the pore scale. This additional mixing process is called macro-dispersion. 
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Theoretically the velocity distribution above the pore scale could be explicitly resolved in a 

groundwater model instead of using the macro-dispersion concept. However, this would re-

quire knowledge on the detailed structure of the aquifer, which usually is not available. When 

asymptotic conditions are reached after a certain travel distance, the mixing processes caused 

by dispersion can be described analogous to Fickian diffusion: 

n

c
 DJ



  

with J = dispersive flux [M L
-2 

T
-1

] 

D = dispersion coefficient [L
2
 T

-1
] 

c/n = concentration gradient [M L
-3

 L
-1

] 

 

Like molecular diffusion dispersion is an irreversible process. However, there are a number of 

important differences between diffusion and dispersion: 

 In general the dispersion coefficient is orders of magnitude larger than the coefficient of 

0 m 40 m 

20 m  pore velocity 
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molecular diffusion 

 Molecular diffusion is an isotropic process, whereas dispersion shows  anisotropic beha-

vior already in an otherwise isotropic ideal medium with dispersion in flow direction be-

ing always larger than transverse dispersion 

 The coefficient of molecular diffusion is independent of the scale of observation, whereas 

the dispersion coefficient is a scaling value, i.e. it increases with increasing scale of ob-

servation 

 The dispersion coefficient depends on the pore velocity. It can be calculated using the so-

called dispersivity α (a mixing path): 

 u D   

 with  α = dispersivity [L] 

u = pore velocity [L T
-1

] 

The dispersivity is a porous medium property. Its value depends on the degree of aquifer hete-

rogeneity and on the integral transport scale. In homogeneous single grained sands the disper-

sivity is in the order of the pore diameter, while it may become very large in natural aquifers. 

The empirical relation between the scale of observation and the dispersivity is illustrated by 

the following figures taken from Gelhar et al. (1992): 
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Dispersion can be considered as differential advection. It should be noted here that it is mole-

cular diffusion which finally makes up the mixing process, but dispersion increases the sur-

face area and thus the overall diffusive fluxes (fig. after Kinzelbach, 1992): 

direction of groundwater flow

kf-distribution

z

contaminant distribution for t=0

contaminant distribution for t=t1

Distance x

C

 

Dispersion is usually quantitatively much more important for solute transport in the aquifer 

model than diffusion, as can be gathered from the following considerations: 

A dispersivity of roughly 10 m can be assumed for solute transport over a few hundred me-

ters. With a mean pore velocity of 1 m d
-1

 = 1.16x10
-5

 m s
-1

 this yields a dispersion coefficient 

of 1.16x10
-4

 m
2
 s

-1
 which is 5 orders of magnitude larger than the coefficient of molecular 

diffusion. 

 

Reaction 

Besides advection and diffusion/dispersion most compounds dissolved in water are subject to 

chemical or biochemical reactions including adsorption/desorption, degradation/decay, and 



 

 12 

dissolution/precipitation. Some specific reactions will be presented later. For the next chap-

ters we will restrict the descriptions on transport of non-reactive, hydrodynamically passive 

solutes. Non-reactive means that the solutes do not undergo any reactions, while hydrody-

namically passive means that solute concentrations are such small that water density or vis-

cosity are not affected, i.e. that there is no back-coupling between transport and flow. 
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Transport equation 

The transport equation for a non-reactive solute can be derived from mass balance considera-

tions in a control volume (e.g. the REV). Then the following mass fluxes are obtained: 

$ advective mass flux: 

 V cu j Wa
  

with ja = advective mass flux (jax, jay ,jaz) [M L T
-1

] 

u = pore velocity  (ux,uy,uz) [L T
-1

] 

c = solute concentration [M L
-3

] 

VW = effective water volume contributing to solute transport [L
3
] 

 

$ dispersive/diffusive mass flux: 

 Vc  D Dj Wmd  )1(  

with jd = dispersive/diffusive mass flux (jdx, jdy ,jdz) [M L T
-1

] 

Dm = coefficient of molecular diffusion [L
2
 T

-1
] 

 1 = Identity matrix

















100

010

001

[-] 

 D = dispersion tensor [L
2 
T

-1
] 

  = nabla operator in three dimensions (/x,/y,/z)  

 

$ For reasons of mass conservation any change in the advective or dispersive/diffusive mass 

flux ja and jd over the surface of the control volume must be balanced by storage change 

inside the control volume or by external sources and sinks: 

Vj j 
t

)V(c
S Gda

W 
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 with S = storage inside the control volume per unit time [M T
-1

] 

 σ = external source/sink [M L
-3

 T
-1

] 

$ Inserting the advective and dispersive mass fluxes leads to: 

     VσV c + D DVuc
t

)V(c
GWmW

W 



)1(  

$ Division by VG and with VW / VG = ne (effective porosity) provides the general transport 

equation in 3 dimensions for non-reactive species: 

     σnc  D Dnuc
t

)n(c 
eme

e 



)1(  

$ Setting ne = constant and ignoring molecular diffusion leads to: 

    
n

c Duc
t

c

e







 

$ Deviation of the advection term gives: 

   u c ucuc   

The term uc describes a change in the advective mass flux caused by a change in the 

pore velocity. For a spatially constant effective porosity ne this means that water must have 

been injected into or extracted from the control volume. Therefore uc can be treated as 

an  external source/sink term: 

  c 
n

w

n
c Dcu 

t

c
Z

ee




 
 

with σ = external source/sink term not coupled to water flux [M L
-3

 T
-1

] 

w = injection/extraction of water applied to the control volume [M L
-3

 T
-1

] 

 cZ = concentration of the incoming water (cZ = c in case of water extraction) [M L
-3

] 

 

The dispersion tensor 

As dispersion is always an anisotropic process, the dispersion coefficient in 2 or 3 dimensions 
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must always be expressed in form of a tensor. Simple expressions for this tensor can only be 

derived for certain simplified aquifer situations. In an isotropic three-dimensional aquifer one 

longitudinal (αl) and one transverse dispersivity (αt) can be distinguished: 

D =  



















DDD

DDD

DDD

zzzyzx

yzyyyx

xzxyxx

 

The off-diagonal components of the tensor, e. g. Dx y and Dx z , allow for a dispersive mass 

flux in x-direction caused by concentration gradients in y- und z-direction: 

z

c
 D

y

c
 D

x

c
 Dj xzxyxxxd














,

If the x-axis is orientated parallel to the flow direction all components except that on the di-

agonal become zero: 

D =
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Numerical solution of the transport equation 

Analytical solutions of the transport equation exist for special cases with simple boundary 

conditions only. In case of arbitrary boundary conditions and aquifer parameter distributions 

the transport equation has to be solved numerically. 

While only temporal derivations (h/t) and second order derivations in space (
2
h/x

2
) occur 

in the flow equation, the transport equation includes temporal derivations (c/t), a second 

order derivation in space (
2
c/x

2
) from dispersion, and an additional first order spatial deri-

vation term (c/x) from advection. This combination of first and second order terms compli-

cates the numerical solution of the transport equation. 

Differential equations consisting of second order spatial terms only are called parabolic diffe-

rential equations. Examples are the flow equation and the diffusion equation. So-called Eule-

rian methods with an fixed grid like the finite difference (FD) or the finite element (FE) me-

thod are well suited for the numerical processing of these equations.  

A differential equation consisting of first order spatial terms only are called hyperbolic diffe-

rential equations. The pure advective transport equation (without dispersion) represents an 

equation of this kind. Suitable numerical methods in this case are the so-called Lagrangian 

methods which have no fixes grids. Instead they track the transport of particles along path-

lines. Therefore these methods are also called particle tracking methods. 

The complete transport equation is of mixed type. It receives a hyperbolic contribution from 

advection and a parabolic contribution from dispersion. According to this hybrid nature nei-

ther Eulerian nor Lagrangian methods are optimally suited for the processing of the transport 

equation. MT3D or MT3DMS provide both pure Eulerian (FD and TVD) and mixed Eule-

rian-Lagrangian methods (MOC, MMOC, HMOC). The latter use a particle tracking method 

to simulate advective transport and the standard finite difference method to simulate disper-

sive transport. The three particle tracking methods vary only in the treatment of the advective 

transport, while dispersive transport is always treated in the same way. Pure Lagrangian me-

thods like the Random-Walk method are not implemented in MT3D or MT3DMS. 

In the following the different available methods and their assets and drawbacks are presented. 

A special emphasis is put on the FD method, as it allows to easily exemplify basic concepts, 

while the other methods are presented somewhat more briefly. Temporal discretisation and 

numerical stability and accuracy criteria are discussed along with the FD method. However, 

these issues are also relevant for many of the other methods. A more detailed description of 

the different methods can be found in Zheng and Wang (1999). 
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The finite difference method (FD) 

The differential equations for solute transport are replaced by differences in space and time: 

t t

c c
 = 

t

c
  

t

c

 

x x

c c
 = 

x

c
  

x

c

12

12

12

12



























 

The application of differences instead of differentials requires that the model area has to be 

discretised on a model grid. This implies that concentrations are no longer calculated conti-

nuously in the model area, but for discrete grid points (nodes) only. The temporal continuum 

is in the same way replaced by discrete points in times for which new concentrations are cal-

culated. 

The problem consists in solving the general transport equation: 

     σcnD Dcnu
t

 c)n(
eme

e 



)1(  

The FD method can be derived intuitively by establishing the nodal mass balance: 

nodal storage per time step 

= 

change of advective flux 

+ 

change of dispersive flux 

+ 

mass change via external sinks/sources not coupled to water flow 

 

Discretisation of the two-dimensional transport equation 

The detailed description of the FD method in three dimensions would be too extensive. Therefore 

the discretisation is explained for the two dimensional case, but it can be easily transferred in 3D. 

We have to solve the following differential equation: 
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Scheidegger (1961) provided an expression for the dispersion tensor: 
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Mass balance for the two-dimensional case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Solute mass storage for node 2: 

 n m y x
t

(t)ct)(tc
s e,2222

22
2 




  

 

 Advective fluxes for node 2: 

 

m x c n ua

 

m x c n ua

 

m y c n ua

 

m y c n ua

2/52/52/5e2/52/5y 2/5y 

4/24/24/2e4/24/2y 4/2y 

2/32/32/3e2/32/3 x2/3 x

1/21/21/2e1/21/2 x1/2 x
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 Change of the advective flux: 

 m y c n um y c n ua  a = a 1/21/21/2e1/21/2 x2/32/32/3e2/32/3 x1/2 x2/3 x2 x   

 m x c n um x c n ua  a = a 4/24/24/2e4/24/2y 2/52/52/5e2/52/5y 4/2y 2/5y y,2   

 

Using an "upwind"-weighted scheme (backward differences) means that c1 is used for  c1/2 

and c4 for c4/2 (if u is positive in x- and y-direction). 

Central -weighting means that the arithmetic mean from c1 and c2 ([c1+c2]/2) is used for  c1/2 

and the arithmetic mean from c2 and c4 ([c2+c4]/2) for c2/4. 

MT3D always uses an upwind scheme, while MT3MS provides both upwind and central differ-

ence schemes. 

 

 Solute mass change in connection with a water extraction or injection for node 2: 

 c m y x wq z22222
  

 

 Dispersive fluxes for node 2: 

 Diagonal terms: 
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cc
 Dd
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 Cross terms: 
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 Dispersive flux in x-direction caused by a concentration gradient in y-direction: 

 One possibility to determine the effective concentration gradient in y-direction is: 
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 The resulting fluxes are: 
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 Dispersive flux in y-direction because of a concentration gradient in x-direction: 

 One possibility to determine the effective concentration gradient in x-direction is: 
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 The resulting fluxes are: 

 

m n x c Dd
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 Total change of dispersive flux: 
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Besides the velocities that can be immediately derived from the flow model results further veloci-

ties on intermediate locations are needed for the calculation of the dispersion coefficients. The 

additional velocities have to be estimated by interpolation: 
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 Solute mass change not connected to water flux at node 2: 

 m y x M 22222    

 

The above mentioned single items of the mass balance can be assembled to the overall mass bal-

ance for node 2: 

 Mddqaas 2y,2x,22y,2x,22   

The discrete transport equation must be solved for each node and every time step. To accomplish 

this the local indices have to be replaced by global indices, i.e. c2 becomes ci,j, c1 becomes ci-1,,j, 

c3 becomes ci+1,,j, c4 becomes ci,,j-1 and c5 becomes ci,,j+1 etc. 

 

Temporal discretisation 

There are different possibilities to perform the temporal discretisation, e.g.: 

• Explicit method: The concentrations c at the beginning of the time step t are used for the 

spatial differences. Then the new concentrations at the end of the time step t + t appear 

only once in the storage term. Therefore the nodal equations can be solved independently 

The explicit method has the advantage that it is easy to program and that the computer 

storage demand is low. However, one has to observe very strict stability criteria and there-

fore has to use very small time steps in general. This may lead to a huge number of simu-

lation steps and thus to a large computational effort. MT3D employs exclusively an expli-

cit scheme. 

• Implicit method: All concentrations c of the spatial difference terms are taken at the end 

of the time step t + t. Therefore the new concentrations at node i depend on the new 

concentrations at node i-1 and node i+1 and the nodal equations can no longer be solved 

separately. Instead an equation system with n equations for n unknowns has to be solved 

for each node. Because of the usually large size of the equation system for 3-dimensional 

problems and implicit formulations direct equation solvers are usually not applicable and 

iterative equation solvers are used. MT3DMS provides both explicit and implicit discre-

tisation schemes 

 

Initial and boundary conditions 

Solving the partial differential equations of solute transport is an initial and boundary value 
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problem. Therefore an initial concentration has to be provided for each node for t=0. For the 

subsequent time steps the results of the previous time steps are taken as initial values. A 

steady state solution independent of the initial values, which can be found for the flow equa-

tion, does often not exist for the numerical solution of the transport problem. 

3 types of boundary conditions can be considered: 

 first type or prescribed concentration boundary, where the concentration at a given node is 

fixed. 

 second type boundary condition (prescribed dispersive flux boundary). This boundary 

condition is of particular interest at no flow boundaries of the flow model where disper-

sive fluxes might occur. In MT3D and MT3DMS dispersive fluxes are ignored on no flow 

boundaries (completely impermeable boundary). 

 third type boundary condition (prescribed total solute flux). This boundary condition may 

be realized in MT3D and MT3DMS by applying injection wells and a given solute con-

centration of the injection water.  

Of special importance is an outflow boundary realized by prescribed heads. The dispersive 

flux remains unknown here as the solute concentration outside the model area and thus the 

“last” concentration gradient is not known. In such a case dispersive fluxes are either com-

pletely suppressed in the model or a so-called transmission boundary is used. Here the last 

known gradient is linearly extrapolated. This is employed by MT3D and MT3DMS. 

 

Numerical stability conditions 

Courant condition: 

 z y, x, = i    
i

u t
i, i




Co  

The Courant number Co must be less than 1 for explicit solution schemes. Otherwise the so-

lution becomes unstable. The meaning of the Courant condition may be derived intuitively 

considering a one-dimensional column consisting of 3 cells: 
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Solute flux from node 1 to node 2 during the time interval t using upwind weighting and 

ignoring dispersion becomes: 

 t cmBu  n = M 1ea,12   

The corresponding solute mass increase for node 2 is: 

 c xmB n = M ea,2   

For reasons of mass conservation the two mass changes must be equal: 

 c x mBt c mBu 1   

Transformation leads to: 

 
c

c

x

tu 

1







 

and: 

 1



 Co

x

tu 
 

Obeying to the Courant condition requires very small time steps in the explicit solution 

scheme. 

 

Neumann condition: 

The Neumann condition vividly means that a concentration gradient must not be reverted by 

diffusive/dispersive transport. Like the Courant condition the Neumann condition can be de-
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rived intuitively. We consider node 2 and assume that the concentration gradient c2-c1  is 

equal to the gradient c2-c3. The dispersive transport from the two adjacent nodes into node 2 

can be written as: 

 t mB
x

c
 D n M

x
ed, 




 2123

  

If we neglect advective transport, the dispersive solute flux must be equaled by a correspond-

ing solute mass increase in node 2: 

 x mB c nt mB 
x

c
 D n te

x
e 




2  

Transformation immediately leads to the Neumann condition: 
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1

22
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Courant-Neumann condition: 

Bear (1979) combined the Courant and the Neumann condition to simultaneously consider 

advective and dispersive transport: 

 1
2

2
  

x

t D 

x

tu 










 

 

Well condition: 

This condition says that the solute mass extracted at a sink node must be less or equal to the 

solute mass present in the respective grid cell. Looking on source nodes it says that the final 

solute concentration at the node must not exceed the concentration of the injected water: 

 n x mB ct c Q e  

Transformation yields: 
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Assuming that the solute flux into the grid cell is equally distributed over both sides, Q = 

2qBm, and with q/ne = u we can write: 
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This condition means that the maximum allowable Courant number should be reduced from 1 

to 0.5 if sink or source nodes are present in the model. The reason for this further restriction is 

that solute flux may enter a sink node from both sides, while unidirectional flow is assumed 

for the standard Courant condition. In a 3-dimensional application, the fluxes may enter or 

leave a sink/source cells over all 6 sides. Consequently the maximum Courant number can be 

as low as 1/6 in the 3-dimensional case. 

Using an implicit scheme allows to partly violate the above mentioned conditions, i.e. it al-

lows for generally larger time steps. However, observing the stability conditions is still rec-

ommended as it enhances the numerical accuracy. 

 

Numerical accuracy 

As mentioned before, the transport equation is of mixed parabolic (diffusion/dispersion) and 

hyperbolic (advection) type.  

However, grid methods like the finite difference and the finite element method are especially 

suited for the solution of parabolic differential equations (e.g. the flow equation or the pure 

diffusive transport equation). The hyperbolic part of the transport equation leads in case of 

upwind-weighted differences to the so-called numerical dispersion. The following figure 

graphically illustrates this phenomenon: 

 

 

 

 

 

 

 

A steep solute front leaves node 1 at time t driven by pure advective transport. After the time 

step t (t  < x/u) the front will reach a certain position in between node 1 and node 2. Be-

cause of the discrete spacing part of the solute will already be assigned to node 2, i.e. the 

sharp solute front will become diffused in the model. This erroneous mixing is called numeri-

cal dispersion. 

The contribution of numerical dispersion N  to total mixing depends on the temporal differ-

 1 2 3 

 1 2 3 
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ence schemes and was quantified by Herzer und Kinzelbach (1989). Spatial upwind weight-

ing of differences was used in both cases: 
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For an implicit scheme numerical dispersion can be minimized by a fine spatial and temporal 

discretisation. An important criterion is the grid-Peclet number Peg: 
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Peg should always be less or equal to 2. Small grid-Peclet numbers ensure that the parabolic 

character of the differential equation prevails, i.e. that numerical dispersion effects become 

small compared to that of physical dispersion. For a given dispersivity l the Peclet criterion 

provides the maximum recommended grid spacing. 

In an explicit scheme numerical dispersion can be eliminated by observing the condition: 

 xtu   

However, this is only possible in one-dimensional homogeneous models. 

Another possibility to decrease the effects of numerical dispersion is to employ a central dif-

ference scheme in space. This drops the contribution of the grid spacing to numerical disper-

sion. However, central differences in space tend to produce numerical oscillations (“wig-

gles”). 

The following figures demonstrate the effects of numerical dispersion and oscillations on 

solute transport. Simulated was the transport of a non-reactive solute in a one-dimensional 

domain. Dispersion was set to zero, i.e. a rectangular pulse should move through the hypo-

thetical column if no numerical dispersion was active. The upper figure shows the result for a 

given time step when using an upwind-weighted difference scheme. Obviously there is a 

strong artificial mixing caused by numerical dispersion. The lower figure was generated using 

a central difference scheme. Here the effects from numerical dispersion are less pronounced, 

however appreciable oscillations have developed during the simulations. 
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According to the spatial discretisation scheme numerical dispersion and spurious oscillations 

emerge complementarily to each other. Both are expressions of an inappropriate discretisa-

tion. In general the effects of numerical dispersion and oscillations can be kept small if the 

grid-Peclet criterion is fulfilled (Peg  2). Furthermore the Courant criterion should be ful-

filled for implicit schemes also (Co  1). 

Basically central schemes are more accurate than upwind-weighted schemes Furthermore 

inappropriate discretisation can be better recognized by the occurrence of oscillations than by 

that of numerical dispersion ("don`t supress the wiggles"). However, negative concentrations 

as a consequence of numerical oscillations may lead to serious problems if transport models 
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are coupled to chemical reaction models. 

Numerical dispersion, which leads to an erroneously increased longitudinal mixing in the 

one-dimensional case may additionally produce an increased transverse mixing in two di-

mensions, if flow is not oriented parallel to one of the axis. For an extreme anisotropy of dis-

persivity (l/t>>10) observing the Courant- and  Peclet condition is not sufficient to minim-

ize the effects of numerical dispersion. Instead it is necessary to additionally consider trans-

verse dispersion. For an explicit difference scheme with upwind-weighting the maximum grid 

spacing in the worst case (ux = uy) should be: 

  t <y x 22  

In general a solute plume should be resolved by at least 10 nodes in transverse direction in 

finite difference methods. In many real field cases it will not be possible to achieve flow di-

rection parallel to the grid everywhere in the model domain. Therefore the risk of excessive 

transverse dispersion is large in FD methods. 

 

The three-dimensional transport with MT3D and MT3DMS 

Completely new features do not arise for the transition from 2- to 3-dimensional transport. 

Accordingly the FD method derived for the 2-dimensional case can be directly transferred to 

3 spatial dimensions. However, some particularities of the FD method as it is implemented in 

MT3D/MT3DMS are shown in the following. 

In the isotropic case, the dispersion tensor is determined after Bear (1979): 
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The tensor as it is developed above is exact in the isotropic case. In an anisotropic aquifer 

with different transverse dispersivities in horizontal and vertical direction, th and tv, 

MT3D/MT3DMS employs the approximation given by Burnett and Frind (1987): 
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The time step size may be either specified by the user, or it can be set automatically by the 

program such that a given Courant number is not exceeded in the whole model domain. Ad-

vection, dispersion and source/sink cells are considered during automatic time step selection. 

A Courant number less than 1 has to be provided when using an explicit scheme (0.2 < Co < 

0.75).  

Prior to simulating solute transport flow calculations have to be performed with MODFLOW. 

This implies that any change in hydraulic parameters like e.g. pumping rates requires a new 

flow simulation before the new transport simulations is done. 
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The TVD method 

TVD stands for TOTAL VARIATION DIMINISHING. All TVD methods have in common that the 

sum of the concentration differences between adjacent nodes is constantly decreased during 

the simulation. The TVD method implemented in MT3DMS is based on a third order FD 

method. Therefore it belongs to the Eulerian methods, i.e. a fixed grid is used. 

A third order FD method means that a third order polynomial is employed to approximate the 

concentrations on a certain x/y/z-position in the model domain. To illustrate this scheme we 

consider a hypothetical one-dimensional model column consisting of four nodes: 

 

 

 

 

The velocity u is constant and directed from left to right, the discretisation is x for all four 

nodes. For calculation of the advective transport from node 2 to node 3 one has to multiply 

the velocity u2/3 with the concentration c2/3. While u2/3 is directly known from flow simulation 
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32  -  ), the concentration c2/3 is not known directly and has therefore to be inter-

polated from known adjacent concentrations. In the FD method shown before c2 (upwind) or 

(c2 + c3)/2 (central weighting) have been used as approximations. The third order TVD me-

thod implemented in MT3DMS uses the following algorithm to interpolate c2/3: 
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 with Co being the Courant-number (Co = 
x

tu




). 

The calculations for the advective transport from node 3 to node 4 is done with the same 

scheme. Finally the concentrations from nodes 1, 2, 3, and 4 are necessary for the formulation 

of the advective term for node 3.  

MT3DMS utilizes an explicit scheme with the TVD method, i.e. the concentrations in the 

above equation are all taken from the previous simulation time. That means that the Courant 

criterion has to be strictly obeyed when using the TVD method. This is always guaranteed in 

MT3DMS as the time step is calculated internally according to the Courant restrictions. Dis-

persive transport and the reaction and source/sink terms are calculated with the implicit FD 

1 2 3 
4 u2/3 u3/4 
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method described before. For the realization of this approach in MT3DMS first the advective 

transport is simulated using the TVD scheme. Then the concentration changes caused by pure 

advective transport enters the subsequent dispersive transport calculations in form of an ex-

plicit source/sink term. 

Similar to the central weighted FD method the TVD scheme as described above might lead to 

appreciable spurious oscillations in the vicinity of steep concentration gradients. To overcome 

this problem a so-called “flux limiter” is introduced. This limiter checks whether the interpo-

lated concentrations on the interface of the nodes lie in between the range of the concentra-

tions values of the respective adjacent nodes. For the example shown above it must hold that 

c2 < c2/3 < c3 if c2 < c3. If this is not the case, then the initial estimate for c2/3 is replaced by the 

concentrations of the upstream node, c2. In other words, the flux limiter results in the re-

placement of the third order TVD scheme by a simple upwind weighted FD scheme if oscilla-

tions occur. 

In general the solution of the transport equation is more accurate using the TVD scheme than 

using upwind or central weighted FD methods. However, also the numerical effort increases 

appreciably, caused by the more costly interpolation of the concentrations between the nodes 

and by the checking and eventual corrections by the flux limiter. Numerical dispersion is re-

duced by the TVD scheme, but it is not completely eliminated. This will only be achieved 

with the characteristics method presented in the next chapter. 
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MOC (METHOD OF CHARACTERISTICS) 

Together with the following two methods (MMOC and HMOC) the MOC belongs to the 

group of mixed Eulerian-Lagrangian methods. Here the advective transport is simulated with 

a particle tracking procedure, while dispersive transport and reactions and sources/sinks are 

simulated with the standard FD method. 

At the beginning of the advective transport calculations with the MOC virtual particles are 

distributed over the model domain. In the vicinity of concentration gradients it is necessary to 

place more than one particle per model cell, i.e. the particle number might become large for 

large 3D model domains. The user decides whether the particles are distributed randomly or 

whether they follow some fixed patterns. By this a position in the grid and a concentration CP 

is attributed to each particle. The initial concentrations of the particle follow from the initial 

concentrations specified for the individual model cells. In MT3D/MT3DMS the grid for the 

transport calculations is adopted from the flow model. 

In the next step the particles are moved by advection for one time step along the path lines 

derived from the flow simulations (“forward tracking” or “front tracking”). This technique 

requires the interpolation of the velocities for any position of the model domain from the 

known discrete velocities determined during flow simulation. MT3D/MT3DMS employs an 

stepwise interpolation scheme. This means that for instance the x-velocity for a given location 

in a cell is interpolated from the two known x-velocities at the interfaces of the cell.  

In a linear interpolation scheme the known velocities are weighted according to their distance 

to the location under consideration: 

 kjixkjixpppx qqzyxq ,2/1,,2/1,)1(),,(     

 with qx = required Darcy velocity in x-direction 

xp, yp, zp = particle position in x, y, z-coordinates 

qi,j-1/2,k, qi,j+1/2,k = known Darcy velocity in x-direction at the two cell interfaces  

x = weighting factor in x-direction = (xp – xj-1/2)/xj 

    xj = grid spacing in x-direction 

 

The same scheme is applied to y- and z-directions. Afterwards the pore velocities, which  are 

the relevant parameters for advective transport, are determined from the Darcy velocities by 
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dividing them by the effective porosity. Finally the advective displacement of a particle re-

sults from the superposition of the individual displacements in the three spatial directions 

xp, yp, zp: 
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Particle displacement in MT3D/MT3DMS may either be calculated with the simple linear 

scheme shown before of with a more costly but also more accurate fourth order Runge-Kutta 

scheme. 

At the end of the advective part of the simulation the mean concentration is determined for 

each cell. The MOC implemented in MT3D/MT3DMS employs the arithmetic mean of the 

concentrations of the individual particles. The new concentration at the end of the advective 

step, Cad, is then taken to define the concentrations used for dispersive transport and chemical 

reactions calculations with the FD method: 

 )()1(* tCCC adad    

 is a weighting factor which can take values between 0.5 and 1, and C(t) is the concentra-

tion in the cell at the previous time step. The temporal weighting is motivated by the consid-

eration that in reality advection, dispersion, and reaction occur simultaneously, while they are 

artificially decoupled in the MOC. Therefore a concentration somewhere in between the value 

at the end of the advective step, Cad, and the average of the old concentration and Cad is se-

lected for the calculation of the concentration changes caused by dispersion and reaction, 

Cdis.  

The new concentration in a cell after advection, dispersion, and reaction, C(t+t), is deter-

mined by: 

 disad CCttC  )(  

Prior to the simulation of the next advective step the concentrations of the individual particles 

residing in a given cell with a certain mean concentration have to be updated, i.e. the concen-

tration changes caused by dispersion and reaction, Cdis, have to be assigned to the particles. 

If  Cdis is a positive value, it is simply added to the old concentrations of the particles: 

 disPP CtCttC  )()(  

However, if Cdis is negative and there coexist particles with high and low concentrations in 

one cell, then it might happen that the concentrations of the particles with low initial concen-
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trations become negative. This is physically meaningless and has to be avoided. So if the con-

centrations of one or more particle become negative, then all particles in the cell are replaced 

by a new set of particles which are all assigned the mean cell concentration C(t+t). 

In order to limit the total number of particles and thus the storage demand and computational 

efforts, a so-called dynamic approach for particle distribution is employed in 

MT3D/MT3DMS. That means that the particles are not uniformly distributed over the model 

grid, but that their spatial density is adapted to the requirements of the simulated transport 

problem. The important criterion is the relative concentration gradient in certain vicinity of a 

cell DCCELLi,j,k:   

 
CMINCMAX
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CMAXi,j,k and CMINi,j,k are the maximum and minimum concentration resp. in the vicinity of 

the cell with the index i,j,k. CMAX and CMIN are the total maximum and minimum concen-

trations resp. in the whole model domain.  

If the relative gradient DCCELL is large at a certain location in the model domain, then an 

increased number of particles are set there in order to allow for an accurate transport simula-

tion in this region. On the other hand it is sufficient  to resolve solute transport with fewer 

particles in regions with low relative concentration gradients DCCELL. For the typical case 

of a pollutant plume in an otherwise uncontaminated aquifer the dynamic approach allows to 

concentrate the particles mainly in the contaminated regions. By this the total number of par-

ticles is reduced compared to a homogeneous distribution, while the desired accurate simula-

tion of the advective transport in the plume area is still ensured. 

The dynamic approach is not only applied for initial particle distribution, but it helps to op-

timize particle distributions throughout the whole simulation. Adapting the particle distribu-

tion is for instance required in cells with sources or sinks. Here it must be warranted that new 

particles are continuously set in source cells (e.g. inflow boundaries) such that the particle 

number does not fall below a given threshold, while particles are removed in sink cells (e.g. 

pumping wells) to avoid excessive particle numbers there. However, it might also be reason-

able to adapt particle numbers in cells without sources or sinks, e.g. if the local concentration 

gradients change during the simulation. 

The big advantage of the MOC is that is virtually free of numerical dispersion even for large 
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grid Peclet-numbers. The treatment of the advective transport with a particle tracking method 

ensures for instance that sharp concentration fronts are sustained  independent of their relative 

position in the underlying grid. But despite the dynamic approach the storage requirements 

and the computational efforts might still be tremendous because of the large number of par-

ticles necessary especially in three-dimensional domains. The biggest disadvantage of the 

MOC compared to e.g. the FD method, however, consists in the fact that it is not mass con-

serving. Mass balance errors are the consequence of the permanent switching between par-

ticle tracking and the FD method during transport simulations. They are pronounced for irre-

gular grids. The drawback of the inaccurate mass balance is especially important if non-linear 

chemical reactions have to be considered in addition to advective and dispersive transport. 
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MMOC (MODIFIED METHOD OF CHARACTERISTICS) 

While the movement of a large number of particles in a given flow field is tracked in the 

standard MOC, only one virtual particle is placed in the center of each cell for the MMOC. 

Then the theoretical starting positions x,y,z of these particles to reach the center of each cell 

are calculated (backward tracking). Finally the known concentrations at the starting positions 

from the previous time step C(t, x,y,z) are used as new concentrations for the cells at the end 

of the advective transport step Cad(t+t, K): 

),,,(),( zyxtCKttCad   

In general the starting position x,y,z will not coincide with the location of a node, i.e. the con-

centration at the starting position will not be known and has to be interpolated from the 

known concentrations of the adjacent nodes. MT3D/MT3DMS employs a linear (tri-linear in 

3D) interpolation scheme, where the concentrations of the adjacent nodes are weighted pro-

portionate to their distance to the starting position x,y,z (8 neighboring nodes are considered 

in 3D). For the scheme presented below it is assumed that the starting position x,y,z lies be-

tween xj and xj-1, yj and yj-1, and zj and zj-1: 
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x, y and z denote the x-, y- und z-position of the starting location. The variable grid distances 
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have to be considered during the determination of the weighting factors for irregular grids. 

The subsequent steps, i.e. the calculation of concentration changes caused by dispersion and 

reaction, are similar to the procedures exemplified for the MOC. 

Problems with the MMOC might arise in cells with sources and sinks. Therefore special par-

ticle distributions are employed for cells of this type. 

The reduced number of particles used in the MMOC compared to the MOC results in reduced 

storage requirements and reduced computational efforts. However, a certain numerical dis-

persion is introduced to the method by the linear concentration interpolation used to deter-

mine the concentration values at the starting positions x,y,z. By this the MMOC partly loses 

the big advantage of the MOC compared to the FD method. 

Theoretically one could utilize a higher order interpolation scheme to reduce numerical dis-

persion. However, this would also imply an increased computational effort, and spurious os-

cillations could arise. MT3D/MT3DMS provides only a linear interpolation scheme. 
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HMOC (HYBRID METHOD OF CHARACTERISTICS) 

This method is a combination of MOC and MMOC. The HMOC merges the advantages of 

the two previously described methods in that it uses MOC or MMOC according to the re-

quirements of the simulated transport problem. The MOC is always used for sharp solute 

fronts and thus for steep concentration gradients, as numerical dispersion will especially arise 

in such regions. An increased computational effort is accepted here. The less costly MMOC is 

employed outside regions with solute fronts, where concentration gradients are relatively low. 

If an initially sharp front is gradually diffused by dispersion or reaction during simulations, 

then the HMOC automatically switches from MOC to MMOC. 

The criterion for switching between the two methods is the local relative concentration gra-

dient DCCELL (remember that this criterion was also used to adapt particle distribution in the 

dynamic approach of the MOC). If DCCELL exceeds a certain threshold value defined by the 

user then MOC is used or the method switches from MMOC to MOC. On the other hand 

MMOC is used or MOC is switched to MMOC for low values of DCCELL. Switching re-

quires that either additional particles are set (MMOC  MOC) or that existing particles are 

partly removed (MOC  MMOC). The appropriate method is checked for each cell and for 

each time step. 

The HMOC allows for an accurate simulation with a limited number of particles. Therefore it 

should be able to completely replace the two underlying methods (MOC and MMOC). In 

practice however, automatic switching does not always lead to the expected results, and it 

might be desirable to use exclusively either one of the basic methods MOC and MMOC. 

Therefore all 3 methods are offered by MT3D/MT3DMS. 
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Comparison of the methods 

Unfortunately none of the simulation methods described before is superior to all others and 

under all circumstances. In fact the question concerning the optimal method has to be ans-

wered problem-specific. Thus different methods might proof to be most appropriate for dif-

ferent model situations according to the boundary conditions, computer performance, and 

requirements to the results. Although the user will most probably develop certain preferences 

during practical experience with simulations, one of the great virtues of MT3D/MT3DMS is 

that it offers an appreciable variety of simulation methods to the user. 

In the following some assets and drawbacks f the individual methods are compiled in tabular 

form. 

 FD explicit FD implicit TVD MOC MMOC HMOC 

computational effort 

or storage demand 

low medium large large low large 

numerical dispersion 

or oscillations 

large large small null medium small 

mass balance exact exact exact not exact not exact not exact 

maximum time step small large small large large large 

 

 

The following compilation provides recommendations for typical transport problems in 

groundwater. Of course these recommendations are not meant to be universally valid, but 

they are rather rough orientation guides. 

 

 

 

 



 

 44 

Characteristics of the model application Recommended method 

Pronounced spatial concentration gradients (e.g. contaminant 

plume with point source, lab study with contaminant pulse) 

TVD, MOC, HMOC  

Regional scale contaminant transport with small concentration 

gradients (e.g. nitrate transport with distributed sources) 

FD 

Exact mass balance important (e.g. coupling of transport and 

non-linear reactions) 

TD, TVD 

Large time steps required (e.g. long range solute transport over 

decades) 

FD implicit, HMOC 

Large grid Peclet numbers (small dispersivities or large grid 

spacing) 

MOC, HMOC 
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Exercise on transport modeling using MT3DMS and PMWIN  

Contaminant transport has to be simulated for a three-dimensional part of a hypothetical aqui-

fer 

 

Flow 

First groundwater flow has to be calculated: 

The model domain consists of 5 layers, 51 cells in x-direction (columns) und 21 cells in y-

direction (rows) (i.e. the total number of nodes is 5355). 

 Discretisation is 50 m and is constant in x- and y-direction (x = y = 50 m) 

 The top layer is unconfined, the remaining four layers are always confined. 

 A fixed head boundary has to be assumed on the left and right hand side of the model do-

main across the total thickness of the aquifer. The two other sides and the aquifer bottom 

are impermeable. (Remember that the model automatically assumes an impermeable 

boundary if not stated otherwise).  

 The discretisation in z-direction is 10 m for all layers. The top of the aquifer is at z = 105 

m (item “Top and Bottom of Layers”). Hence the total aquifer thickness is 50 m. 

 Steady state groundwater flow can be assumed. 

 The fixed head at the left hand side is h = 100 m, and at the right hand side h = 97.5 m. 

The resulting head gradient I is 2.5m / 2500m = 0.001. The fixed heads have the same 

values in all layers 

 The horizontal hydraulic conductivity kfh is 10
-3

 m/s in layers 1, 2, 4 and 5, the vertical 

hydraulic conductivity there is kfv = 4x10
-4

 m/s. This corresponds to an anisotropy factor 

kfh/kfv of 2.5. 

 Layer 3 has a reduced horizontal hydraulic conductivity of 10
-4

 m/s and a reduced vertical 

hydraulic conductivity of 4x10
-5

 m/s.  

 The effective porosity is ne = 0.3 anywhere in the model domain. 

 Groundwater recharge in the whole model area is 200 mm/a or 6.3x10
-9

 m/s. 

 A pumping well is located in the cell with the coordinates x=35, y=11, z=5. The pumping 

rate is -0.015 m
3
/s. 

 Select the PCG2 method (preconditioned conjugate gradients) with "Modified Incomplete 

Cholesky" – preconditioning as solution method. The maximum number of inner itera-

tions is 30 and that of the outer iterations is 50. The maximum allowable difference in 

heads between 2 iterations is 10
-5

 m, the difference in water flux 10
-5

 m
3
/s. 

 

Please simulate groundwater flow and illustrate the calculated head distributions for layers 1 

and 5. How can the difference between the two layers be explained? 
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 Transport: 

$ An idealized rectangular contaminant source is located in the cells (20/8), (20/9), (21/8) 

and (21/9). This spill area represents a permanent contaminant source. All groundwater 

passing by the spill adopts a contaminant concentration of 1000 g/m
3
. The spill area is li-

mited to the top layer of the aquifer. 

 

Please illustrate advective contaminant transport with the help of pathlines. Will the well be 

affected by the groundwater contamination?  

 

 Two virtual observation points have to be installed in order to trace contaminant spread-

ing. One of them is located directly in the well (lowest layer), the other is located at a dis-

tance of about 150 m away from the well in the top layer (coordinates x = 35, y = 8, z = 

1). 

 Contaminant transport has to be simulated for a period of 20 years (= 6.28x10
8
 s). Please 

use the MT3DMS model and apply the 6 different transport methods one after the other:  

1. Finite difference method with upwind-weighting 

2. Finite difference method with central in space weighting 

3. Total Variation Diminishing method (TVD)  

4. Method of Characteristics (MOC)  

5. Modified Method of Characteristics (MMOC) 

6. Hybrid Method of Characteristics (HMOC) 

 

$ Longitudinal dispersivity αl is 10  m. The resulting grid Peclet number in x-direction Pegx 

is Δx/αl = 5. The horizontal transverse dispersivity 1 m, the vertical transverse dispersivity 

is 0.1 m. 

 

 Display the breakthrough curves for the two observation points for 20 years of simulation. 

Discuss the differences between the two curves. 

 

 Warning: Output times have to be specified in the „Output Control“ item. A meaningful 

value for NPRS („output frequency“) is 11 or larger. 

 

What looks the contaminant distribution like in layers 1 and 5 after 20 years? How is the 

position of maximum contamination shifted along the pollutant plume in the different layers? 

What would the contaminant distribution look like if the well was not in operation? Store the 

graphical illustrations of the concentration distribution in DXF-format. 
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Input parameters for the different simulation methods 

 

FD upwind:  

Courant number (PERCEL):   0.75 

 Solver:     GCG (General Conjugate Gradient) 

Preconditioning Method:     Jacobi 

Max. Number of Outer Iterations (MXITER): 1 

Max. Number of Inner Iterations (ITER1): 50 

Relaxation Factor:    1 

Concentration Closure Criterion:   0.000001 

Concentration Change Printout Interval:  0 

Do not include full dispersion tensor 

 

FD central: 

Same parameters as for FD upwind 

 

TVD: 

All parameters are set automatically (e.g. via stability criteria) 

 

MOC: 

Particle Tracking Algorithm: Hybrid 1
st
 order Euler and 4

th
 order Runge-Kutta 

Simulation Parameters: 

Max. number of total moving particles (MXPART):  50000 

Courant number (PERCEL):     0.75 

Concentration weighting factor (WD):    0.5 

Negligible relative concentration gradient (DCEPS):  0.00001 

Pattern for initial placement of particles (NPLANE):  4 

No. of particles per cell in case of DCCELL<=DCEPS (NPL): 0 

No. of particles per cell in case of DCCELL>DCEPS (NPH): 30 

Minimum number of particles allowed per cell (NPMIN): 0 

Maximum number of particles allowed per cell (NPMAX): 40 
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MMOC: 

Particle Tracking Algorithm: Hybrid 1
st
 order Euler and 4

th
 order Runge-Kutta 

Simulation Parameters:  

Courant number (PERCEL):     0.75 

Concentration weighting factor (WD):    0.5 

Negligible relative concentration gradient (DCEPS):  0.00001 

Pattern for placement of particles for sink cells (NLSINK): 0 

No. of particles used to approximate sink cells (NPSINK): 30 

 

HMOC: 

Particle Tracking Algorithm: Hybrid 1
st
 order Euler and 4

th
 order Runge-Kutta 

Simulation Parameters: 

Max. number of total moving particles (MXPART):  50000 

Courant number (PERCEL):     0.75 

Concentration weighting factor (WD):    0.5 

Negligible relative concentration gradient (DCEPS):  0.00001 

Pattern for initial placement of particles (NPLANE):  4 

No. of particles per cell in case of DCCELL<=DCEPS (NPL): 0 

No. of particles per cell in case of DCCELL>DCEPS (NPH): 30 

Minimum number of particles allowed per cell (NPMIN): 0 

Maximum number of particles allowed per cell (NPMAX): 40 

Pattern for placement of particles for sink cells (NLSINK): 0 

No. of particles used to approximate sink cells (NPSINK): 30 

Critical relative concentration gradient (DCHMOC):  0.0001 
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Transport and reaction 

So far we have considered the transport of non-reactive solutes only. However, most solutes 

are subject to reactive processes in addition to advection and diffusion/dispersion in the aqui-

fer. For instance cations may adsorb onto clay minerals or other negatively charged surfaces 

and many organic compounds are affected by microbially mediated degradation. A non-

reactive behavior can be assumed for a few solutes only, e.g. for chloride or for uranin (organ-

ic dye). There are many model approaches of different complexity to account for reactive 

processes in aquifers. Two rather simple and widely used examples are first order degradation 

and linear retardation. 

 

First order degradation 

First order degradation means that the temporal concentration change of a solute is proportional 

to the actual concentration c itself. The proportionality factor is the degradation rate : 

c 
dt

dc
  

This ordinary differential equation can be easily integrated: 
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with  c = concentration [M L
-3

] 

t = time [T] 

 = degradation rate [T
-1

] 
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A well known process that can be macroscopically described with a first order law is the ra-

dioactive decay of a substance. Under certain circumstances the first order law can also be 

used to describe the chemical or biochemical degradation of a solute. For instance if the de-

gradation rate of a contaminant depends on its own concentration only, i.e. if the concentra-

tions of other substances involved in the reactions like e.g. oxidants are not rate limiting, then 

contaminant degradation may be described by a first order law. 

A first order degradation term is considered in most standard groundwater transport models. 

It may be used if it becomes obvious that the solute under consideration disappears in the 

model domain. Furthermore so-called biochemical half-lives are documented for many com-

mon organic compounds. This half-lives haven been determined in laboratory and field stu-

dies and are a rough estimate for the degradation behavior of a solute in a given environment 

(e.g. aerobic or anaerobic conditions). The degradation rate can be directly determined from 

the half-life t1/2: 
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Retardation 

The retardation of a solute is caused by its interaction with the aquifer material. Different 

types of interactions are summarized by the term adsorption or sorption. The implementation 

of linear retardation in a transport model is exemplified for the one-dimensional transport 

equation with constant porosity and without additional sinks/sources: 
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with ne = effective porosity [-] 

nmat = specific volume of the aquifer material [-] 

mat = density of the aquifer material (usually 2.5 -2.65 kg l
-1

) [M L
-3

] 

cg = concentration of the species in the pore water [M L
-3

] 

ca = concentration of the species adsorbed to the aquifer material [M M
-1

] 

S1, S2 = source/sink terms 

 

Mass conservation requires that S1 = -S2. Both equations can be combined into one equation: 
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In case of linear retardation the correlation between dissolved and adsorbed concentration is 

given by a linear isotherm: 

 c kc gda   

with kd = adsorption coefficient or distribution coefficient or partitioning coefficient [L
3 
M

-1
] 

Using kd the above equation may be further transformed: 
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Now it is possible to define the so-called retardation factor R: 
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Using R the conventional notation can be obtained: 
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mat nmat is often combined to the bulk denisty b. nmat can be expressed by 1 - n with n being 

the total (geometric) porosity of the medium 

The retardation factor R is usually greater than 1, i.e. the transport of the respective solute is 

delayed compared to the mean water movement by a factor of R. Organic solutes will always 

experience a certain amount of retardation. For these substances empirical relations have been 

established between certain physico-chemical properties of the substance and the retardation 

factor. The most frequently used compound property is its distribution coefficient between 

octanol (an alcohol with 8 C-atoms) and water kOW. The kOW is a measure of the polarity of a 

given compound. The higher its value, the less polar or lipophilic a compound is, and the 

higher is its tendency to leave the polar water phase and to adsorb to the less polar constitu-

ents of the aquifer material. 

For different groups of compounds correlations could be found in laboratory studies between 

the kOW of a substance and its distribution coefficient between natural organic aquifer material 

(e.g. humic substances) and water (kOC). Some examples are: 

1.) 

    k 0.63k OWOC   
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2.) 

     k 9.92k
0.54
OWOC   

3.) 

    k 3.09k
0.72
OWOC   

 with koc in L kg
-1

 

Equation 1) is valid for hydrophobic aromatic hydrocarbons (Karickhoff et al., 1979), 

equation 2) for halogenated hydrocarbons (Briggs,1981) and equation 3) for tetrachloro-

ethylene and chlorinated benzenes (Schwarzenbach und Westall, 1981). 

The kOC’s refer to natural organic carbon. The kD of a substance is obtained by multiply-

ing the kOC with the fractional organic carbon content of the aquifer fOC: 

 k fk OCOCD   

The empirical relations are applicable for fOC > 0.001only. For a lower content of natural 

organic carbon interactions of the organic solutes with minerals, especially clay minerals, 

can no longer be neglected. 

• The following table shows calculated retardation factors for some typical contaminants in 

 a hypothetic aquifer with ne = 0.3, nmat = 0.7, mat = 2.65 kg/l and fOC = 0.001. The kOC 

values are taken from Montgomery und Welkom (Groundwater Chemicals Desk Refer-

ence): 

substance usage formula kOC [L/kg] R [-] 

tetrachloroethene (PER) solvent C2Cl4 250 2.55 

vinyl chloride  intermediate C2H3Cl 2.5 1.02 

benzene fuel additive C6H6 60 1.37 

o-xylene solvent C8H10 130 1.8 

monochlorobenzene pesticide production C6H6Cl 310 2.9 

1,2,4-trichlorobenzene pesticide production C6H6Cl3 1600 10.9 

hexachlorcyclohexan (Lindan) pesticide C6Cl6 1900 12.75 

 



 

 54 

Besides linear isotherms it is also possible to use adsorption models with non-linear iso-

therms, e.g.: 

 Freundlich isotherm: 

 c kc
n
ga   

with k = Freundlich constant [dimension depends on n] 

n = Freundlich exponent [-] 

 

The linear isotherm can be considered as a special case of the Freundlich isotherm with n 

= 1. For n < 1 the solute is preferentially adsorbed for lower dissolved concentrations 

(convex isotherm), while preferential adsorption for higher solute concentrations is real-

ized with n > 1 (concave isotherm). 

 

 Langmuir isotherm: 

 
c k

c k c
c

gL

gL a,

a



1

max
 

with kL = Langmuir constant [L
3 
M

-1
] 

ca, max = maximum adsorbed concentration (saturation concentration ) [M M
-1

] 

 

The Langmuir isotherm is a so-called saturation isotherm. The denominator approaches 1 

for low dissolved concentrations cg, i.e. a nearly linear adsorption behaviour arises. For 

high cg the adsorbed concentration ca approaches the maximum adsorbed concentration ca, 

max and effects of adsorption on solute transport decrease. 

 

Generally the different isotherms link dissolved and adsorbed concentrations: 

 )cf(c ga   

Therefore it can be written more generally: 
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R for the Freundlich isotherm is: 
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The following retardation factor is received for the Langmuir isotherm: 
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The numerical solution of the transport equation with the standard methods requires the lin-

earisation of non-linear isotherms. Therefore the retardation factors are treated explicitly, i.e. 

the dissolved concentrations cg from the previous time step are used. 

The following figures illustrate the impact of different isotherms on solute transport for a hy-

pothetical one-dimensional situation. All concentration distributions are displayed for the 

same simulation time. The top figure shows solute spreading without any retardation (R=1). 

The figure below illustrates the effects of a linear isotherm with R=2. The third figure from 

top was generated using a Freundlich isotherm with an exponent of 0.8 (convex isotherm). 

The bottom figure exemplifies the impact of a Freundlich isotherm with an exponent of 1.3 

(concave isotherm). 

 

 

 

 

 



 

 56 

 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 11 21 31 41 51 61 71 81 91 101

distance (m)

c
o

n
c
e
n

tr
a
ti

o
n

 (
m

g
/l
)

 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 11 21 31 41 51 61 71 81 91 101

distance (m)

c
o

n
c
e
n

tr
a
ti

o
n

 (
m

g
/l
)

 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 11 21 31 41 51 61 71 81 91 101

distance (m)

c
o

n
c
e
n

tr
a
ti

o
n

 (
m

g
/l
)

 



 

 57 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 11 21 31 41 51 61 71 81 91 101

distance (m)

c
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

/l
)

 

The following differential equations are solved in MT3D/MT3DMS for reactive transport 

simulations: 
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That means that the solution of the transport equations proceeds analogous to the non-reactive 

case, but now with an additional linear decay term and with all terms on the right hand side 

divided by R. 
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